Agenda - 9:00 Welcome and Opening Remarks - 9:05 Introductions - 9:15 Scenario Planning Results Localized Gaps - 10:15 Break - 10:30 Planning Options for Future Water Needs - 10:45 Adaptive Management - 11:30 Question and Answer Session - 11:50 Next Meeting - 12:00 Adjourn ## Introductions ### Missouri Planning Scenarios | | Scenario | M&I
Demands | Ag
Demands | Climate | Water
Treatment
Level | Supply
Constraints | Reservoir
Regulations | |--|---|--|--|--|---|---|---| | | 1. Business-
As-Usual | Baseline M&I demands Baseline Rural demands | Med Ag irrigationMed Ag processing | Historical
temperaturesHistorical
precipitation | Existing water treatment levels | No water supply
constraints | No re-allocation of
USACE reservoirs for
supply Existing permitting
process for new
reservoirs | | | 2. Strong
Economy/
High Water
Stress | High M&I demandsHigher Rural demands | High Ag irrigation Med-High Ag processing | Hotter
temperaturesLower rainfall | High
increase in
water
treatment
levels | Interstate diversions
out of Missouri
River Basin Limitations on GW
(select areas) Prolonged supply
disruption on River
intakes | Limited re-allocation
of USACE reservoirs
for supply Streamlined
permitting process
for new reservoirs | | | 3. Substantial
Agricultural
Expansion | Baseline
M&I
demands Baseline
Rural
demands | Med Ag irrigationHighest Ag processing | Warmer
temperaturesGreater
rainfall | Moderate
increase in
water
treatment
levels | Interstate diversions
out of Missouri
River Basin Limitations on GW
(select areas) | Limited re-allocation
of USACE reservoirs
for supply Existing permitting
process for new
reservoirs | | | 4. Weak
Economy/
Low Water
Stress | Low M&I demandsBaseline Rural demands | Med Ag irrigationMed Ag processing | Warmer
temperaturesGreater
rainfall | Existing water treatment levels | No water supply
constraints | No re-allocation of
USACE reservoirs for
supply Existing permitting
process for new
reservoirs | ### Limitations of the Analysis - Comparisons of supply and demand at the subregional (HUC4) and even watershed (HUC8) scale can miss localized stress and gaps - Results do not consider in-place infrastructure to move water from one location to another - Alluvial demands treated as groundwater (but may impose stress to surface water) - Planned or proposed projects are not considered # Interpreting the Results for Surface Water Identifying Potential Supply Stress Average Conditions | Condition | on Analysis Result | | Potential Water
Supply Stress | Key | |-----------|--------------------|--|----------------------------------|-----| | | Monthly | Demand < 50% of Supply for entire year | No Stress | | | Average | Monthly | Demand > 50% of Supply for 1 month or more | Low St <mark>ress</mark> | | | | Monthly | Demand > Supply for 1 month or more | Higher Stress | | #### Scenario 1 – Business-As-Usual (Average Conditions) # Scenario 1 — Business-as-Usual & Scenario 2 — Strong Economy/High Water Stress (Average Conditions) # Scenario 1 – Business-as-Usual & Scenario 3 – Substantial Agricultural Expansion (Average Conditions) # Scenario 1 — Business-as-Usual & Scenario 4 — Weak Economy/Low Water Stress (Average Conditions) ### Subregion Surface Water Result Summary • Non-Major River Demands – Average Conditions | Potential Water Supply
Stress | | # of Basins
Scenario 1 –
Business-As-
Usual | # of Basins Scenario 2 — Strong Economy/ High Water Stress | Scenario 2 – Scenario 3 – Strong Substantial Economy/ High Agricultural | | |----------------------------------|--|--|--|---|---| | | Demand < 50%
of Supply for
entire year | 3 | 2 | 3 | 3 | | | Demand > 50%
of Supply for 1
month or more | 5 | 2 | 3 | 5 | | | Demand > Supply for 1 month or more | 1 | 5 | 3 | 1 | ### Subregion Surface Water Result Summary Non-Major River Demands – Drought Conditions | Potential Water Supply
Stress | | # of Basins
Scenario 1 –
Business-As-
Usual | # of Basins Scenario 2 – Strong Economy/ High Agricultural Water Stress # of Basins Scenario 3 – Substantial Agricultural Expansion | | # of Basins Scenario 4 – Weak Economy/ Low Water Stress | |----------------------------------|--|--|---|---|---| | | Demand < 50%
of Supply for
entire year | 1 | 1 | 1 | 1 | | | Demand > 50%
of Supply for 1
month or more | 0 | O | O | 0 | | | Demand > Supply for 1 month or more | 8 | 7 | 8 | 8 | #### Scenario 1 – Business-As-Usual (Average Conditions) #### Surface Water Stress No Stress Low Potential Stress Higher Potential Stress Number of months exceeding threshold included in the symbol # Scenario 1 — Business-as-Usual & Scenario 2 — Strong Economy/High Water Stress (Average Conditions) # Scenario 1 – Business-As-Usual & Scenario 3 – Substantial Agricultural Expansion (Average Conditions) # Scenario 1 – Business-As-Usual & Scenario 4 – Weak Economy/Low Water Stress (Average Conditions) # Scenario 1 – Business-As-Usual (Drought of Record Conditions) #### Scenario 1 — Business-as-Usual & Scenario 2 — Strong Economy/High Water Stress (Drought of Record Conditions) # Scenario 1 – Business-as-Usual & Scenario 3 – Substantial Agricultural Expansion (Drought of Record Conditions) # Scenario 1 – Business-as-Usual & Scenario 4 – Weak Economy/Low Water Stress (Drought of Record Conditions) # Interpreting the Results for Groundwater Identifying Potential Supply Stress | Condition | Analysis | Current
GW Levels | Withdrawals* as a
Percent of
Recharge | Potential Water Supply
Stress | Key | |-----------|----------|----------------------|---|----------------------------------|-----| | | | No Trend | Decrease | No Stress | | | | | No Trend | Relatively Flat | NO Stress | | | Avarage | Annual | No Trend | Increase | L avv Chroso | | | Average | | Declining | Flat or Decrease | Low Stress | | | | | Declining | lining Increase | | | | | | Declining | Substantial
Increase | Increasing | | ^{*} Relative to 2016 withdrawals # Groundwater **Relative** Results – Scenarios 1, 2, 3, and 4 Average Conditions ### Subregion Groundwater Result Summary Average Conditions | | | | | Number of Basins | | | | |---|-----|----------------------|---|------------------------------------|---|---|--| | | Key | Current GW
Levels | Withdrawals* as a
Percent of
Recharge | Scen. 1 -
Business-
As-Usual | Scen. 2 -
Strong
Economy/
High Water
Stress | Scen. 3 –
Substantial
Agricultural
Expansion | Scen. 4 -
Weak
Economy/
Low Water
Stress | | | | No Trend | Decrease | 3 | 1 | 9 | 6 | | | | No Trend Declining | Increase Flat or Decrease | 4 | 7 | 0 | 3 | | 4 | | Declining | Increase | 2 | 0 | 0 | 0 | | | | Declining | Substantial
Increase | 0 | 1 | 0 | 0 | ^{*} Relative to 2016 withdrawals ### Groundwater Results for Scenarios 1, 2, 3 and 4 Average Conditions **Scenario 1** – Business-As-Usual **Scenario 2** – Strong Economy/ High Water Stress **Scenario 3** – Substantial Agricultural Expansion Scenario 4 – Weak Economy/ Low Water Stress ### M&I Options to Meet Future Water Needs - Additional/expansion of surface storage - Conveyance - Wastewater reuse - Expanded conservation - Conjunctive use (groundwater/surface water) - System redundancy (intakes and conveyance) - Regionalization of water systems - Enhanced water treatment ### Agricultural Options to Meet Future Water Needs - Additional storage - Conveyance - Conjunctive use of surface water and groundwater - System efficiency (in the Bootheel with furrow irrigation and transition to high value crops) - Drainage water recycling - Meeting demand for expanded food processing operations - Expanded groundwater use for livestock - Expanded alluvial groundwater use for additional irrigation - Surface impoundments for livestock in northwest Missouri - Cropping system management ### Steps in Scenario Planning - 1) Identify major uncertainties that can impact the future - 2) Select most important uncertainties as "drivers" of scenarios - 3) Combine uncertainty drivers into scenarios that represent a different possible futures - 4) Measure impacts of scenarios and assess options to address impacts - 5) Use an adaptive management framework for continuous reassessment and implementation of options # Use Adaptive Management for Continuous Re-Assessment and Implementation of Options ### Adaptive Management **Identified Projects:** - East Locust Creek Reservoir **Project** - Cameron Pipeline Project - Southwest Missouri Water Resources - Missouri American Reservoir **Project** - Little Otter Creek Reservoir **Project** **Implement** "Strong Economy" More New **Strategies** "Ag Expansion" **Implement** Some New Strategies "Business as Usual" Stay the Course "Weak Economy" Stay the Course Now ### Missouri Planning Scenarios | | Scenario | M&I
Demands | Ag
Demands | Climate | Water
Treatment Level | Supply
Constraints | Reservoir
Regulations | |--|---|---|---|--|--|---|---| | | 1. Business-As-
Usual | Baseline M&I demands | Med Ag
irrigation | • Historical temperatures | • Existing water treatment levels | No water supply constraints | No re-allocation of USACE reservoirs for supply | | | | Baseline Rural demands | Med Ag processing | • Historical precipitation | | | • Existing permitting process for new reservoirs | | | 2. Strong
Economy/
High Water
Stress | High M&I demands Higher Rural demands | High Ag irrigationMed-High Ag processing | Hotter
temperaturesLower rainfall | High increase in
water
treatment levels | Interstate diversions
out of Missouri River
Basin Limitations on GW
(select areas) Prolonged supply
disruption on River
intakes | Limited re-allocation of
USACE reservoirs for
supply Streamlined permitting
process for new reservoirs | | | 3. Substantial
Agricultural
Expansion | Baseline M&I
demandsBaseline Rural
demands | Med Ag irrigationHighest Ag processing | Warmer
temperaturesGreater
rainfall | Moderate
increase in
water
treatment levels | Interstate diversions
out of Missouri River
Basin Limitations on GW
(select areas) | Limited re-allocation of
USACE reservoirs for
supply Existing permitting process
for new reservoirs | | | 4. Weak
Economy/
Low Water
Stress | Low M&I demandsBaseline Rural demands | Med Ag irrigationMed Ag processing | Warmer
temperaturesGreater
rainfall | Existing water
treatment levels | No water supply
constraints | No re-allocation of USACE
reservoirs for supply Existing permitting process
for new reservoirs | ### Adaptive Management Overview & Framework Adaptive management is a framework that can be used to implement water supply options as the future unfolds, in a structured way to avoid the pitfalls of either under-performance or over-investment. #### Terms: - Risk Triggers uncertainties that can drive the need for new projects, which are tied back to scenario planning - Outcomes consequences or results of the "risk triggers" occurring - Options identification of water supply options that can be implemented to mitigate the "outcomes" ## M&I Options to Meet Future Water Needs - Additional/expansion of surface storage - Conveyance - Wastewater reuse - Expanded conservation - Conjunctive use (groundwater/surface water) - System redundancy (intakes and conveyance) - Regionalization of water systems - Enhanced water treatment ## Agricultural Options to Meet Future Water Needs - Additional storage - Conveyance - Conjunctive use of surface water and groundwater - System efficiency (in the Bootheel with furrow irrigation and transition to high value crops) - Drainage water recycling - Meeting demand for expanded food processing operations - Expanded groundwater use for livestock - Expanded alluvial groundwater use for additional irrigation - Surface impoundments for livestock in northwest Missouri - Cropping system management # Adaptive Management – M&I Risk Triggers ## Water Supply Options - Additional/expansion of surface storage - Conveyance - Wastewater reuse - Expanded conservation - Conjunctive use (groundwater/surface water) - System redundancy (intakes and conveyance) - Regionalization of water systems - Enhanced water treatment # Adaptive Management – M&I Risk Triggers *Similar to Strong Economy/High Water Stress ## Potential Water Supply Options - New or repurposed surface reservoir - Alternative reservoir project - Increased water conservation - Non-Potable wastewater reuse - Surface/groundwater conjunctive use - Indirect Potable wastewater reuse - New water treatment - Regionalization of some water systems - System redundancy: new river intake # Adaptive Management – M&I Risk Triggers *Similar to Weak Economy/Low Water Stress ### **Potential Water Supply Options** - Explore new options - Alternative reservoir project - Stay the course but keep monitoring situation - Increased water conservation - Conjunctive use - New water treatment # Adaptive Management – Agricultural Risk Triggers ## Water Supply Options - Additional storage - Conveyance - Conjunctive use of surface water and groundwater - System efficiency (in the Bootheel with furrow irrigation and transition to high value crops) - Drainage water recycling - Meeting demand for expanded food processing operations - Expanded groundwater use for livestock - Expanded alluvial groundwater use for additional irrigation - Surface impoundments for livestock in northwest Missouri - Cropping System Management # Adaptive Management – Agricultural Risk Triggers *Similar to Substantial Ag Expansion ### **Potential Options** - Drainage water recycling - Meeting demand for expanded food processing operations - Alternative reservoir project - Expanded groundwater use for livestock - Surface impoundments for livestock in northwest Missouri - System efficiency in the Bootheel - Conjunctive use of surface water and groundwater - Surface impoundments for livestock in northwest Missouri # Adaptive Management – Agricultural Risk Triggers *Similar to Strong Economy/High Water Stress ### **Potential Options** - Drainage water recycling - System efficiency (in the Bootheel with furrow irrigation and transition to high value crops) - Alternative reservoir project - Expanded groundwater use for livestock - Expanded alluvial groundwater use for additional irrigation - Surface impoundments for livestock in northwest Missouri - System efficiency in the Bootheel - Additional storage - Conveyance - Cropping system management - Surface impoundments for livestock in northwest Missouri ## Roles for Adaptive Management ## Missouri Department of Natural Resources - Set Policies - Update State Water Plan as needed - Monitor and revise risk triggers Municipalities, Water Agencies, Local Districts, Ag Users, and private entities - Identify potential water supply projects - Implement water supply projects as needed #### All Funding #### **USACE** - Reservoir Regulation/Management - Water Studies # Technical Workgroup Update ## Next Interagency Task Force Meeting November 6, 2019 1:00 p.m. to 4:00 p.m. Lewis and Clark State Office Building, Jefferson City, MO